Planning Level AADT Volume Thresholds for Two-Lane Undivided Roadways

Agoney	Corridor Level of Service									
Agency	D	E								
WisDOT ¹	7,500 – 22,500	8,000 – 25,000								
SEWRPC ²	16,800	17,800								

¹ FDM 11-20-1, Attachment 1.1, expressed in average daily traffic (ADT)
 ² SEWRPC Vision 2050 (AWDT converted to AADT)

Table includes daily traffic thresholds and corresponding LOS for two-lane roadways based on the WisDOT FDM and SEWRPC. It should be noted the capacity thresholds documented in the FDM are the criteria used to determine capacity expansion (additional travel lane) needs. The SEWRPC formation is provided in the table for comparison purposes only.

AADT Volume Thresholds for Two-Lane Undivided Roadways

County K and CN Railroad Study

Waukesha County, WI

This alternative looks to route Duplainville Road to the west and connect with CTH K (Lisbon Road) at a location further to the west. Under this alternative, Duplainville Road would be routed around the existing Waukesha County Maintenance Facility and tie into CTH K (Lisbon Road) though the existing Mielke property leaving the Waukesha County Maintenance facility as is.

This alternative will require significant right-of-way acquisition. Once Duplainville Road deviates from its existing alignment, all new roadway right-of-way will need to be purchased which will result in property acquisition from the Johnson, Ramon Olsen Investments, Ellen Glass Trust and Mielke properties. One advantage that this alternative has over the previous alternatives discussed is that it allows for the existing Quarry Corners Parkway intersection with CTH K (Lisbon Road) to be relocated further to the east. Based on current engineering standards, the existing Quarry Corners Parkway intersection is too close to the STH 74 intersection. As part of this alternative, the existing Quarry Corners Parkway would be routed to the east and form a t-intersection with Duplainville Road. This will effectively eliminate one access to CTH K (Lisbon Road) as a result of combining the Duplainville Road and Quarry Corners intersections.

2007 CN Railroad Road Reallignment

County K Corridor Study

Legend

XX = Midblock Crash Total

Study Area Cra 2020 – 2024 (

Waukesha County, WI

	Table 3. Cou	nty K Intersed	ction Crash Rat	es (2020-202	4)
	1	umber & Sev	erity of Crashe	s	
county K section With	Fatal	Injury	Property Damage	Total	Crash Rate (Crashes pe Million Entering Vehicle
County JK	0	0	10	10	0.48
iness Drive	0	0	4	4	0.18
WIS 164	0	21	55	76	1.39
cutive Drive	0	3	5	8	0.28
ple Avenue	2	4	5	9	0.38
County F	0	28	41	69	1.17
ville Road/CN RR	0	2	12	14	0.75
County V	0	2	12 14		0.59
County Y	0	9	15	24	1.38
ach Si	Imm	arv			Exhibit
Crash	Data	a			3

	County K (Lisbon Rd) Corridor ¹ : Total Crash Summary														
	Crash Type Severity														
									Injury						
Year	Rear	Angle	Head On	Side Swipe	Other	Ped/ Bike	Fixed Object	Leaving Roadway	к	А	В	С	PDO	Total ²	
2020	21	18	0	5	0	0	2	4	0	2	11	7	30	50	
2021	15	16	0	3	1	0	3	2	2	1	9	3	25	40	
2022	17	18	1	5	0	1	7	3	2	4	6	7	33	52	
2023	25	21	2	5	3	1	2	2	0	0	8	9	44	61	
2024	25	24	0	8	0	0	4	3	0	2	7	8	47	64	
Total	103	97	3	26	4	2	18	14	4	9	41	34	179	267	

¹ Project limits extend from just west of County JK to just east of County Y.

² Includes intersection and mid-block crashes.

County K (Lisbon Rd) Corridor: (County JK (Lynndale Rd) to County Y (Lannon Rd)): 5 Year Average Crash Rate Calculation

		K	ABCO Crash Ra	te	I	KAB Crash Rate	
Corridor AADT Volume (vpd)	Corridor Length (mi)	KABCO Crash Rate (crashes per 100 MVMT)	Exceeds Statewide Average for crash rate? (84.07 crashes per 100 MVMT) ³	Exceeds Upper Control Limit for crash rate? (93.55 crashes per 100 MVMT) ³	KAB Crash Rate (crashes per 100 MVMT)	Exceeds Statewide Average for crash rate? (19.33 crashes per 100 MVMT) ³	Exceeds Upper Control Limit for crash rate? (23.88 crashes per 100 MVMT) ³
10,400	4.93	285	YES	YES	58	YES	YES

³ Statewide average crash rates and upper control limits show represent Rural County Trunk Highways, based on 2018-2022 data.

Study Area Crash Summary 2020 – 2024 Crash Data Tables

NOT PART OF CTH K (JK to Y) PROJECT

RSM 1A

CRASH SEVERITY DEFINITIONS K = Fatality A = Suspected Serious Injury B = Suspected Minor Injury C = Possible Injury PDO = No Apparent Injury

CONCEPTUAL SAFETY IMPROVEMENTS (Separate from CTH K (JK to Y) Project

CTH F & CTH K WAUKESHA COUNTY, WISCONSIN

Waukesha County, WI

Overall ntersection LOS

긑

R

Ħ

R

R

LT TH

Parameter

Peak Hour AM

Traffic Control

Intersection

- (A) - 0.0 Ø

Delay, sec/veh Queue, ft

Level of Service (LOS) per Movement by Approach

2055 Background Peak Hour Traffic Operations

٨N

٨N

26.6

26.6

0.0

Delay, sec/veh Queue, ft

М

S

One-Way Stop Control

Lisbon Rd (County K) with Lymndale Rd (County JK)

٨N

٨N

32.4 8 26.0 95 33.3 145

Ø

ĥ

13.5 13.5

МЧ

8

Delay, sec/veh Queue, ft LOS Delay, sec/veh Queue, ft

One-Way Stop Control

Lisbon Rd (County K) with Maple Ave

AM

œ

25 25

C

LOS

ш

C

56.5 4

28.1

40.5

27.7 109.5 52

ပ

los

Traffic Signal

Lisbon Rd (County K) with Waukesha Ave / Redford Blvd (County F)

105

Delay, sec/veh Queue, ft

M

25.2 110

Delay, sec/veh Queue, ft

AM

ŝ C

۵

150

20

20

မူ ပ

မ္လျပ

ß

16.5 55 B

ŝ

220 A

Delay, sec/veh Queue, ft

AM

20.1 C 140

Delay, sec/veh Queue. ft

М

S

Traffic Signal

Lisbon Rd (County K) with Town Line Rd (County V)

245

2025 Existing Peak Hour Traffic Operations

int by Approach	ound Southbound Intersection	H RT LT TH RT LOS	1 1 1	- 36.3 N/A	- 255	- - -	- 14.9 N/A	06 -	D F B	.2 32.2 130.4 130.4 13.6 NA	5 <25 105 105 <25	C E E	.0 46.0 226.7 226.7 21.1 N/A	15 <25 85 85 35	0 0 0	.8 24.5 20.5 32.9 23.7 C	5 165 85 480 95	с с	14 22.3 23.5 35.3 27.8 C	5 170 70 345 125	888	.0 15.9 18.4 18.4 18.3 B	0 40 175 175 145		11 18.5 21.5 21.5 22.4 B	5 40 210 210 200	C F F B	.0 22.0 365.7 365.7 10.6 N/A	15 <25 356 355 <25	8	7 41 7 355 1 355 1 14 0 N/A									
er Movem	North	5	ш	36.3	255	•	14.9	8	<u> </u>	32.2 3.	~25 <	ш	46.0 4(~ ₹	ш	67.8 2	340 2	_ _	36.1 2	390		16.0 1(20 90	-	19.1 19	8	- 0	22.0 22	~ 25	ш	417 4									
OS) pe	pur	RT	ŀ	ı	ı	ı	ı	ľ	Ø	0.0	0	Ø	0.0	•	U	22.5	25	ပ	22.8	8	m	14.6	20	8	13.9	88	(A)	0.0	0	Ø	00									
Nice (lestbou	₽	Ø	0.0	•	Ø	0.0	•	A	9.7	<25	A	8.9	ŝ	U	25.3	165	U	27.5	220	m	18.7	180	œ	18.5	305	A	8.4	<u>~25</u>	A	8.5									
of Sel	\$	5	•	10.4	ŝ	4	93	\$	4	9.7	\$	4	8.9	ŝ	ပ	25.5	9	ပ	23.9	165	m	14.3	8	8	13.4	45	A	8.4	\$ <u>5</u>	×	8.5									
Leve	pun	R	§	0.0	•	Ø	0.0	•	Ø	0.0	•	3	0.0	•	ပ	29.7	180	ပ	30.6	150	<	5.3	53	A	5.0	53	Ø	0.0	•	3	0.0									
	Eastbou	Ħ	S	0.0	•	Ø	0.0	•	A	9.0	\$°	8	3 11.3	Š.		1 37.2	465		1 35.7	320	A	4 7.8	195	A	0 6.4	155	A	8.9	°2 ₽	A	10.0									
		5	'	1	ľ	'	1	'	A	h 9.0	Ŷ	8	11.	Ŷ	U U	Ч	8	ပ	h 21.	2	8	h 10.4	125	•	h 11.0	14	A	h 8.9	Ŷ	A	h 10.(
		Parameter	ros	Delay, sec/ve	Queue, ft	SOJ	Delay, sec/ve	Queue, ft	ROS	Delay, sec/ve	Queue, ft	SOJ	Delay, sec/ve	Queue, ft	SOT	Delay, sec/ve	Queue, ft	SOJ	Delay, sec/ve	Queue, ft	SOJ	Delay, sec/ve	Queue, ft	SOJ	Delay, sec/ve	Queue, ft	ROS	Delay, sec/ve	Queue, ft	ros	Delay, sec/ve									
	Peak Hour AM I						AM C					WA MA						AM		Md				AM			М													
	Traffic Control Control Stop Stop Stop Stop						Control			Control			Control			Control			Control			Control				Traffic	Signal					Traffic	Signal				Torn Micer	Cton	Control	
	Intersection Lisbon Rd Lymrdale Rd Lymrdale Rd (county JK) (county V, wth Maple Ave									Lisbon Rd	(County K) with	Redford Blvd	(County F)			Lisbon Rd	(County K) with	Town Line Rd	(County V)			Lisbon Rd	(County K) with	Lannon Rd	(County Y)															

Notes:

- Indicates movement is not available or allowed.
 (A) Indicates free-flow movement
 HCM methodology does not identify an overall intersection level of service for one-way stop controlled intersections

LOS Peak Hour Traffic Operations

Exhibit 9

٨N

20.1 60

-200 -200 575

200 575

164 G

164.6

R

0

ائ

~25

0

30 30

Delay, sec/veh Queue, ft

МЧ

LOS Delay, sec/ve. Queue, ft LOS

AM

Two-Way Stop Control

Lisbon Rd (County K) with Lannon Rd (County Y)

\$25 164 G 30 30

(Y) 0 (S) 00

٨N

8

Waukesha County, WI

Table 10. PCI Thresholds								
PCI Ratings	Pavement Condition							
85-100	Very Good to Excellent							
70-85	Good							
55-70	Fair							
40-55	Poor							
25-40	Very Poor							
10-25	Serious							
0-10	Failed							

Table 11. PCI By Section													
Roadway Section	2020 PCI	2023 PCI	2023 Condition	Anticipated 2035 PCI	Anticipated 2035 Condition								
County JK to Business Drive	65	62	Fair	40-50	Very Poor to Poor								
Business Drive to Executive Drive	71	69	Fair	50-61	Poor to Fair								
Executive Drive to County F	67	62	Fair	40-50	Very Poor to Poor								
County F to Quarry Corners Parkway	60	46	Poor	20-30	Serious to Very Poor								
Quarry Corners Parkway to County V	60	44	Poor	20-30	Serious to Very Poor								
County V to County Y	70	66	Fair	40-50	Very Poor to Poor								

PCI Tables and Map

= Study Intersection

PREPARED BY: G. ALE

DATE: 1/21/2025

(XXXX)

Miles

FORECAST YEAR 2055 AWDT: BUILD SCENARIO

(D) 2055 FORECASTS ARE OBTAINED AS PLANNED YEAR 2050 FORECASTS PLUS FORECAST INCREMENTAL GROWTH BETWEEN 2045 AND 2050.